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The modelling of large deformations of pre-oriented polyethylene
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Abstract

High temperature reversion tests have revealed a state of pre-existing molecular orientation in extruded polyethylene sheet. This state is
related to differences in stress-deformation behaviour when specimens of the sheet are stretched along different angles with respect to the
extrusion direction. An established large deformation, rate-dependent constitutive equation has been developed to model this material, by
incorporating the pre-orientation by the addition of a strained Gaussian network. The level of pre-orientation is deduced from the dimensional
changes on shrinkage. The constitutive equation is incorporated into the finite element package ABAQUS, and the shapes and drawing forces of
tensile specimens extended at various angles to the extrusion direction are modelled. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Solid phase deformation processing is now a proven
effective means of manufacture. Articles and engineering
components are produced by this route with properties
enhanced by molecular orientation. These processes involve
the stretching, at elevated temperatures, of pre-formed
polymer, often in the form of extruded sheet. When model-
ling the stretching process, some assumption is required as
to the initial state of the material; often (e.g. Ref. [1]), it
is reasonable to assume that the material is isotropic.
However, it is known [2] that the properties of extruded
sheet depend on the deformation and temperature history
in a complex way, and that many of its mechanical proper-
ties are anisotropic. It is accepted [2] that a state of
molecular orientation may exist in the extruded sheet.

We have observed cases in which the level of pre-
orientation is high, and has significant effects in the
subsequent deformation process. In this paper, we explore
how to model the process while taking account of a general
pre-existing state of orientation. This requires the develop-
ment of a nonlinear constitutive law with the property of
initial anisotropy, and its implementation within a finite
element analysis. The resulting model is verified by com-
parison with the stretching at high temperature of speci-
mens of extruded polyethylene sheet. The extruded sheet
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is pre-oriented, as established by observations of shrinkage,
and the tensile axes of the specimens are at various angles
with respect to this pre-orientation. The predictions of
shapes and drawing forces are compared with experimental
observations, the experimental strain fields being obtained
using image capture.

2. Experimental
2.1. Material

The high density polyethylene material is characterised
by weight and number averaged molecular weights My, =
225,000 and My = 24,000, respectively, and by a short
branch content of less than 1.5 butyls per 1000 carbons.
The sheets used were made from this polymer with an
addition of 2.5% by weight carbon black, as an aid to UV
protection. Sheets were made by extrusion using a machine
of single screw design, operating at a melt temperature of
190°C and outputting to an 8 mm feed. The extrudate was
reduced to 4 mm thickness by flowing through a converging
die, and then passed between rollers to a cooling stage. The
final product was 3.9 mm thick.

2.2. Shrinkage

The level of pre-orientation of the extruded sheet was
assessed by reversion tests. Specimens were heated in an
oil bath at 150°C and the dimensional changes observed.
Initially square specimens of side 100 mm with edges
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Fig. 1. Reversion tests for the extruded sheet, with the original specimen
above and the reverted specimen below.

aligned with the extrusion direction, were used. After
15 min of immersion, the dimensions had ceased to change
significantly, and the specimen was retrieved and its linear
dimensions measured. A specimen in its initial and reverted
states is shown in Fig. 1. The dimensional changes were
large and easily measurable, leading to the conclusion that
the sheet was pre-oriented to an extension ratio 3.1 along the
extrusion direction, 0.75 normal to the extrusion direction in
the plane of the sheet, and 0.43 through-thickness. The
irregular shape of the reverted specimen suggests that the
level of prestrain is not uniform throughout. It seems likely
that the regions at the surfaces that cool quickly after
extrusion will retain a higher level of orientation. However,
at this stage this is difficult to quantify, and we proceed on
the basis that the pre-orientation is uniform. The usefulness
of this assumption will become apparent.

2.3. Tensile tests

Tensile specimens were made by punching regular arrays
of holes in the extruded sheet, to give the required gauge
geometry, and then cutting out the individual specimens.
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Fig. 2. Tensile specimen geometry. Dimensions in mm.

Extent of grips

Thus, for the geometry illustrated in Fig. 2, the vertical
surfaces bounding the gauge length and the adjacent circular
arcs are the products of the punching process. The speci-
mens were stretched in an environmental chamber in air at
110°C. The specimens were drawn at constant speeds, and
the drawing force monitored, using an Instron testing
machine. They were illuminated and their images captured
through the window of the chamber using a digital camera.
Strain profiles were then derived by analysis of the images,
with the aid of lines printed on the specimen surfaces [3].

Specimens were produced with axes either along the
extrusion direction normal to it or at 45°. Most tests were
at the standard testing speed of 100 mm min ™', though the
slower speed of 20 mm min~' was used to investigate rate
dependence.

3. Constitutive equation

Arruda et al. [4] have developed a constitutive model in
which the total plastic strain is subjected to a prestrain. In
our approach, only a proportion of the polymer network is
prestrained. Thus, the stress comprises two components.
The greater of the two arises from the stretching of what
we consider the ‘main’ network, governed by a nonlinear
rate-dependent theory established previously which we term
the ‘sphere-in-box’ model [5,6]. The minor component
arises from the stretching of a Gaussian network (the
‘subnetwork’) that has been prestrained, with a pre-existing
deformation gradient, uniform over the body. The prestrain
is defined by a set of principal extension ratios and a
director, corresponding to the initial direction of the greatest
principal stretch.

The main network and the subnetwork differ physically
from each other in that the former includes nonlinear visco-
elastic effects while the latter is elastic. Stress in the
subnetwork will therefore persist as long as it remains
strained, while the stress in the main network will relax.
An arrangement such as this is essential for the shrinkage
to take place, since there are many fewer polymer chains in
the subnetwork and yet it must, over time, overcome the
resistance of the main network. We assume that, after
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shrinkage has taken place, the stress in the main network has
relaxed to zero, and so we may simply relate the observed
shrinkage and the pre-orientation in the subnetwork.

At any integration point in the finite element model, there
exists a deformation gradient tensor G, defined as

Bxi
(@)

where the vectors in global 1-2-3 axes, (X;,X,,X3) and
(x1,x5,x3), define material points in the undeformed and
deformed states, respectively. To establish the main stress
component, standard polar decomposition procedures [7]
are applied. Forming the left Cauchy—Green strain measure,
C eliminates rigid body rotations:

C=GGT )

Stresses for the sphere-in-box model are defined along
principal directions. In the two-dimensional formulation
adopted here, these are effectively defined by a single
angle 6 with the global 1 axis, with which the rotation R,
is associated. The Cauchy—Green tensor in principal
directions C, is then given by

C, = R,CR} (3)

From this tensor, we derive principal (I and II directions)
extension ratios A; and Ay in the plane, with the out-of-plane
stretch Ay defined via the incompressibility condition

MAgAg =1 “4)

The significant feature of the sphere-in-box model [6] is
that these principal stretches are used to derive effective
principal stretches A, Ay, which reflect the strain concen-
trating effect of a hypothetical rigid sphere embedded in a
cube of network material. At any time, the sphere radius is
decreasing at a rate depending on the level of shear stress in
the surrounding network, thus lowering the strain concen-
trating effect and introducing time dependence into the
model. While the sphere may not be equated with any speci-
fic morphological features, the concept is motivated by the
existence of stiff regions within the polymer that create
strain concentration in the network; the rearrangement of
microstructure on straining is represented by the shrinking
of the sphere in response to shear stress. The network is
assumed to be defined by the model of Ball et al. [8],
which is elastic with the change in strain energy per unit
volume W" defined by

W 111 111 (1 _’_1’))\ _
_:—NZ/\ + NZ(I-I— . +1n(1+nA?))
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where the superscript m denotes the main network. The
physical quantities are k the Boltzmann constant, T the
absolute temperature, N, and N the number per unit volume
of crosslinks and sliplinks, respectively and 1 a parameter
governing the mobility of the sliplinks.

The sphere has a dimensionless radius R that evolves with
time ¢ according to the relation
dR
pri —(R — Ro)A[exp(B7) — 1] (6)
The values of A, B and R, are chosen so as to best
characterise the observed material behaviour; R, defines
the lower limit of R, and its initial upper limit value R,
must also be specified. The process is driven by the quantity
7 that is related to the maximum shear stress and defined by

_ . m _ __m
T = Omax Omin

where the quantities on the right are the greatest and
smallest principal stresses in the main network. Thus, a
total of seven parameters are required to define the
sphere-in-box model.

As a result of the assumption of incompressibility (which
applies by implication to the effective stretches) and the
adoption of a plane stress formulation, principal stresses
in the main network of" and oy’ are given by

- BW BW”‘
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Finally, the principal stresses are transformed back
through the angle 6 to the global 1-2 axes to give the
main network stresses a1}, o and 5.

We assume that the subnetwork is already stretched by a
deformation gradient S. When the deformation gradient G is
applied, the stress response of this network is governed by
the deformation gradient G® = GS. Arruda et al. [4] used
the same method to prestrain their plastic strain tensor. The
deformation G® is analysed in the same way as G to reveal
principal directions and principal extension ratios. Thus, as
in Eq. (2), the Cauchy—Green tensor C® is generated:

CS — GSGST (8)

The principal directions for this stretch are then found in
the form of the angle ¢ between the principal I axis and
global 1 axis, with which we associate the rotation Ry. The
principal Cauchy—Green tensor is then

C;, = RyC'Ry, 9

from which the subnetwork principal extension ratios A} and
A are derived. We assume that the subnetwork deformation
is incompressible, with the out-of-plane Aj; stretch given by

A AA = 1 (10)

The stress in the subnetwork is assumed to arise from the
stretching of a Gaussian network, with strain energy per unit
volume W* defined by

WS = N(Afz A2 42— 3) (11)
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Table 1
Main network parameters

N, (MPa) N, (MPa) 7 Ry, R AGTYH B (MPa™")

0.7 6.4 023 09 07 467x107° 071

The crosslink number N defines the stiffness of the
subnetwork. Principal stresses are given by

oWt aw?

A} AL

o} =

(12)
gr W oW
TaNy Ay

The stresses must be transformed back to the global axis
set through the angle ¢ to give the subnetwork stresses o,
o5, and o7,. To complete the subnetwork specification, the
prestretch tensor S must be defined. This is assumed to be an
incompressible deformation, so only two principal exten-
sion ratios, u; and wy;, are required, together with a director
angle «a, defined as that between the global 1 axis and the
extension wi. Thus these three parameters and N specify the
subnetwork.

Finally, the total stress is given by the sum of stresses in
the main network and the subnetwork:

. m s
o =01 T on
_.m s
Oy =02 T 02 (13)

_ m S
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4. Numerical implementation

The constitutive equation outlined above was implemen-
ted using the package ABAQuS, via its UMAT user-defined
material facility. An input of strain in the form of the
deformation gradient G results in an output of total stress
as finally given in Eq. (13). Also, there is the requirement for
the Jacobian tensor that relates stress increments to strain
increments. Its components are given by

(90'11 (90'11 60‘11

ae” 8622 ('96‘]2
Jdo do ao

J= 22 22 22 (14)
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Table 2
Subnetwork parameters

N (MPa) M1 M

0.03 3.1 0.75
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Fig. 3. Finite element meshes. (a) quarter model for symmetric cases and
(b) full model for the director direction 45°.

where the e;; are components of natural strain. The matrix J
is asymmetric, and its nine components are generated
numerically. For each deformation gradient G, four
Cauchy—Green tensors are used. The first corresponds to
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Fig. 4. Load—extension data for stretching along the extrusion direction:
(—) observed, (—) modelled.

G and is given as C in Eq. (2), while the others are perturba-
tions corresponding to small changes Ae;;, Aey; and Aey, in
the strains ey, e, and ey, respectively. The components of J
are thus estimated by the differences Ao;/Ae;; corresponding
to the entries in J specified in Eq. (14).

5. Results and modelling
5.1. Parameter values

The values of the seven parameters required to define the
main network are given in Table 1. We have arrived at them
by a trial-and-error process aimed at producing the best fit to
observed load—extension curves. This process is eased by
the fact that some of the parameters have quite specific
effects on the load—extension curves. The initial sphere
radius R, influences the deformation at which the initial
load peak occurs (see Figs. 4—6). The ratio N./N, controls
the position of the load minimum. At large strains, the effect
of the N; term becomes negligible, and this aids the
determination of the absolute value of N,. The values of A

10

Nominal stress / MPa

0 T T T T T T
0 5 10 16 20 25 30 35

Extension / mm

Fig. 5. Load—extension data for stretching normal to the extrusion direc-
tion: (—) observed, (—) modelled.
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Nominal stress / MPa

0 T T T T T T
0 5 10 15 20 25 30 35

Extension / mm

Fig. 6. Load—extension data for stretching at 45° to the extrusion direction:
(—) observed, (—) modelled.

and B control the strength of the rate dependence of the
stress, and so they must correspond to the observed effect
of different testing speeds on the peak stress. They also have
a general effect on the predicted shapes.

The subnetwork is characterised by three parameters. The
crosslink number is determined from the difference in stress
observed in tensile tests along different directions with
respect to the extrusion direction, as described below in
load—extension curves. The value of w; and wy are
determined by shrinkage, as detailed above (Section 2.2),
and are 3.1 and 0.75, respectively. The subnetwork
parameters are summarised in Table 2.

5.2. Finite element models

We have subjected the geometry of Fig. 2 to two-
dimensional plane stress analysis using the finite element
package ABAQUS. Four-noded bilinear elements were used.
The meshes are shown in Fig. 3. For director angles a = 0
and a = /2, (o as defined in Section 3) the symmetry
conditions are such that a quarter model is sufficient; this
is shown in Fig. 3a. Otherwise, for « = m/4, a full model is
required, as shown in Fig. 3b. The numerical implementa-
tion has been described in Section 4.

5.3. Load—extension curves

The mesh of Fig. 3a is stretched along the extrusion axis
(e =m/2) to an extension equivalent to 32 mm of the
complete specimen, at a speed equivalent to
100 mm min~'. The predicted and observed load—extension
curves are shown in Fig. 4, where load is plotted in the form
of nominal stress. The model parameters give a good overall
fit in quantitative terms, the main discrepancies being in the
early part of the curve, where the peak load is predicted to
occur at a somewhat later stage than the observed. A similar
quality of fit is obtained for the lower speed of
20 mm min "', where the predicted peak nominal stress is
lower with respect to the 100 mm min ' test by 9%; this
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Fig. 7. Deformed meshes. (a) Along the extrusion direction, with undeformed mesh for comparison, extension 21 mm. (b) Normal to the extrusion direction,
extension 21 mm. (c) 45° to the extrusion direction, with undeformed mesh for comparison, extension 32 mm.

should be compared with a lowering of the observed stress
by 12%. The rate dependence of the stress is thus shown to

be reasonably consistent with the predictions for strain rates

Similar comparisons are made for the case where stretch-
in this range.

ing is normal to the extrusion direction (o = 0). Fig. 5
shows the predictions of nominal stress. For both the
observed and modelled curves, there is a greater drop in
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stress after the peak in comparison with the above (a = 1/2)
case. At extensions of 25 mm and more, there is good agree-
ment for both &« = 0 and a = 7/2. The difference in stress
between the two cases arises solely from the pre-oriented
network, and the good predictions of the stress at large
extension validates the chosen value of the crosslink number
N for the subnetwork. It should be noted that the nominal
stresses at these deformations differ significantly, with
values of 7.4 MPa when a = 7/2 and 6.6 MPa when o = 0.
Load—extension data for « = w/4 are compared in Fig. 6.
The validity of the prediction is similar to that which is
obtained for the other director angles, again with good
predictions of drawing stress at large extension.

5.4. Deformation fields

The models, stretched to deformations equivalent to
32 mm specimen extension at 100 mm min ', are shown
in Fig. 7. It is clear that the necking shown in Fig. 7b,
which is for the stretching normal to the extrusion axis, is
more localised than that of Fig. 7a, where the stretching is
along the extrusion direction. This conforms to observed
behaviour. For the extension at 45° to the extrusion direction
shown in Fig. 7c, the clear qualitative effect is that of the
rotation of initially vertical lines of material points. This
effect, a result of being relatively less extension along the
stiff director, is borne out by the experimental observations.

Quantitative comparisons for deformations caused by the
stretching along the extrusion direction are given in Fig. 8.
Here the maximum axial extension ratio, occurring at the
neck centre, is plotted. Initial and final extension ratios are
predicted accurately, but there is an interim stage between
extensions of 13 and 15 mm during which the deformation
is predicted to develop too rapidly. At this stage the devel-
opment of strain is controlled by the strain rate sensitivity of
the stress do/dé,,, where é,; is an appropriate measure of
the strain rate [9]. The decrease in this quantity as the strain
develops enables the strain rate to increase. The discrepancy
between the observed and predicted localised strain, appar-
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Fig. 8. Modelling of the development of axial strain at the specimen centre
for drawing along the extrusion direction. (—l-) observed, (—) modelled.
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Fig. 9. Modelling of the development of axial strain at the specimen centre
for drawing normal to the extrusion direction. (—M-) observed, (—)
modelled.

ent in Fig. 8, is a measure of inaccuracy in the modelling of
the decrease in strain rate sensitivity by the ‘sphere-in-box’
model. It should be noted that, if strain rate dependence
were not included in the model, the increase in strain rate
would begin at an earlier stage corresponding to an
extension of 10 mm coinciding with the load peak shown
in Fig. 4.

For deformation normal to the extrusion direction, strains
evolve more rapidly. This is reflected in the model predic-
tions in Fig. 9 of maximum extension ratio. However, at a
quantitative level the strain prediction shows a too-rapid
development, beginning at an extension of 12 mm, which
is suppressed at too low a value. The rapid increase in
predicted strain is a similar effect to that for drawing
along the extrusion direction, caused by poor modelling of
the change in the strain rate sensitivity. After this process is
complete, the strain rate settles to a low value, where the
predicted level of strain is too low. This process is close to a

Extension ratio

1 T T T
0 10 20 30 40

Extension/ mm

Fig. 10. Modelling of the development of axial strain at the specimen centre
for drawing at 45° to the extrusion direction. (~M-) observed, (—)
modelled.
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(a)

(b)

Fig. 11. Captured images of specimen markings overlayed onto distorted finite element meshes. (a) Extension 30 mm. (b) Extension 33 mm. (c) Extension

42 mm.

stable necking process, and corresponds to near constant
values of nominal stress. The discrepancy in the observed
and modelled strain levels in Fig. 9 corresponds to the
difference in the specimen extension at which the observed
and modelled stresses reach constant values, shown in Fig. 5.
It is clear that at this stage of the process, the way in which
the strain evolves is extremely sensitive to the small changes
in the shapes of stress—strain curves.

For stretching at 45° to the extrusion axis, the observed
and modelled maximum extension ratios are compared in
Fig. 10. There is good agreement towards the end of the
experiment, though this is preceded by significant discre-
pancies when both the observed and modelled strains are
changing rapidly. Another important aspect of the deforma-
tion is the angle turned by lines of material in the gauge. The
modelled rotation angles are compared with those observed
in Figs. 11 and 12. Overlaying images of printed lines,
initially normal to the extension direction, onto the distorted
finite element mesh facilitates the comparison over the
whole surface of the specimen. In Fig. 12, the angle at the
centre of the specimen is plotted and compared with

the prediction. The angle goes through a rapid change,
which is predicted to occur at a somewhat earlier stage
than the observed; the last observed angle is 19°, compared
with the prediction of 16°. The finite element model can be
seen to give a good representation of the observations.

6. Conclusions

The introduction of a pre-oriented Gaussian network
component is an effective method of creating an initially
anisotropic constitutive law. In the case discussed here, a
Gaussian network is used, its material parameters —
prestrain tensor and crosslink number — being evaluated
by direct observations of shrinkage and of tensile testing
along different material axes of an extruded HDPE sheet.
The stress from this subnetwork is added to that arising from
the main (initially isotropic) rate-dependent network. The
resulting constitutive equation has been successfully imple-
mented using the finite element package ABAQUS. This finite
element analysis has been used to model the drawing forces
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Fig. 12. Modelling of the development of the angle of initially horizontal
lines of material at the specimen centre for drawing at 45° to the extrusion
direction. (—l-) observed, (—) modelled.

and deformation fields that result from large tensile
deformations of the sheet being applied along various
axes relative to the extrusion direction. The experimen-
tal deformations have been quantified using image
capture.

The existence of a pre-oriented state has significant
effects on both the drawing forces and the drawn shapes,
with necking of the specimens more severe for stretching
normal to the extrusion direction. The finite element
modelling reflects these effects well. In the case of stretch-
ing at 45° to the extrusion axis, there are gross qualitative

effects on the deformation, which are again captured well by
the finite element model.
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